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1 Introduction 

London, a metropolitan city and one of the world’s most significant financial, cultural, and educational hubs, has 

continually attracted domestic and international migrants in the contemporary era. Consequently, its housing 

prices rose 130 percent between January 2005 and January 2023. With an affordability Ratio below three being 

considered cost-effective, such a ratio in London denotes a span of housing expenditure from 7 to 13 times the 

average salary, which established significant housing unaffordability amongst Londoners (Treadwell, 2024). 

Yet, the city also suffers from a low delivery rate of housing construction, meeting only ⅓ of its original expansion 

plan in 2023. The government has published corresponding policies in response to the housing shortage, such as 

the Permitted Development Rights (PDR) for commercial-to-residential conversions in locations once deemed 

suitable only for non-residential land use. However, most estates constructed under this policy are smaller and 

more expensive (by sqm) than average, with less accessible green spaces and higher levels of air pollution (Chng 

et al., 2023).  

Another obstructive factor against London’s housing expansion is the Metropolitan Green Belt (MGB), which 

protects about one-fifth of its occupiable land. Treadwell (2024) claimed that MGB leads to the inflation of the 

actual housing price by four and a half times and 15 times for the land price. 

With these concerns, we came up with our research interest: How can we streamline the housing design workflow 

for a metropolitan city like London, in a computational way? As such, this project aims to automate the process 

of urban housing densification for stakeholders, delivering a more intelligent and systematic approach to relieve 

the urban housing crisis and prototyping the practice in London. 

2 Literature Review 

2.1 Existing Urban Planning Tool 

There are several urban design tools available for a metropolitan city like London. Prism (2025), an integrated 

open-source online design tool for urban planners developed by Bryden Wood and sponsored by the Mayor of 

London, aims to enhance the design process for Precision Manufactured Housing and Modern Methods of 

Construction. Its advantages include automation through the use of open-source and real-time data specific to 

London, the ability to facilitate precise online housing design activities, and the provision of dashboard visuals 

that summarize the status of current housing availability and distribution. However, the tool has limitations, such 
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as the lack of support for computational design features and outdated dashboard data, with information that is not 

current and dated before 2018. 

 

Fig. 1A. Prism by Bryden Wood 

 

2.2 Generative Design Example: Townscaper 

We also look into 3D design generation tools, such as Townscaper by Stålberg (2021), which automates building 

configuration in a gaming environment. The interactive prototype application enables users to design freely with 

just a few clicks. Utilizing model synthesis through Wave Function Collapse for procedural content generation, it 

features a non-orthogonal base map that allows for designs from various heights and angles, facilitating the 

generation of features for the corresponding placement of blocks. Its advantages are a minimal user learning curve 

and the automation of site-specific designs with identifiable block features. However, the tool is constrained by 

the shape of the base map, and the outcomes are not transferable to real-life contexts. 

 

Fig. 1B. Townscaper by Stålberg 
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2.3 Algorithms 

Kimm (2024) develops a comprehensive classification of AI tools in architectural design and planning. The 

technologies are organized into categories of tools, techniques, and methods according to their roles in the design 

workflow of practitioners. It summarizes the current AI tools, models, and prototypes while providing a detailed 

breakdown of the agent-based simulation technique. The study points out that agent-based modeling produces 

complex systems through autonomous agent interactions, and learning agents enhance performance from learning 

experience, making it suitable for real-time design with freedom. 

Qian et al. (2023) introduce a Consensus-based Multi-Agent Reinforcement Learning framework to facilitate real-

world land use readjustment, thereby enhancing participatory urban planning and automating the complex, 

manual, experience-driven alteration planning process. This approach flattens the planning decision-making 

process by employing cooperatively rewarded agents, with top-down agents mimicking the behaviors of planners 

and developers. At the same time, bottom-up groups simulate behaviors emerging from different economic bracket 

layers, approaching actual design workflow systematically. Additionally, the framework includes real-life 

applications to validate model performance. Similarly, Yu et al. (2023) establish a Deep Reinforcement Learning 

(DRL) model for multifunctional urban planning. By comparing the generative results of the model with manual 

designs created by human experts, the research concludes that the agent-based DRL model outperforms traditional 

planning workflows. The performance evaluation highlights the advantages of DRL over human urban planners, 

particularly in implementing smart fill techniques for optimizing functioning zones. 

Within the domain of agent-based reinforcement learning, research by Simoniti (2022) into reinforcement learning 

algorithms focuses on developing the Proximal Policy Optimization (PPO) technique, which employs a clipped 

surrogate objective function that quantifies and maps the advantage function to assess an agent's actions under a 

given policy. This approach effectively stabilizes the learning process's efficiency by constraining the gradient of 

policy updates, making it widely applicable across various training scenarios, particularly for single-agent 

reinforcement learning. PPO balances sample complexity, simplicity, and wall time, contributing to its 

effectiveness and popularity in the field. 

With interest in urban zoning and classification, Lagonigro's article discusses quadtree mapping as a method for 

visualizing local population data while preserving accuracy and maintaining privacy (2017). It compares this 

approach to a traditional model, AZTools, which utilizes a bottom-up methodology to aggregate data points into 

uniform areas based on defined constraints. The study concludes that the hierarchical squared structure of the 

quadtree offers more comparable spatial and temporal statistics. Key advantages include effective data 

visualization on an urban scale and a layered structure that enhances the depth of analysis. 

We also explore the Depth-First Search (DFS) Algorithm for identical building labeling tasks. Berman (2024) 

highlights its role as a fundamental and versatile tool for graph pathfinding and cycle detection. The search 

mechanics are based on a recursive binary tree structure, allowing the algorithm to traverse branches before 

backtracking and enabling it to detect cycles to the greatest depth possible. Key features of DFS include depth-

sensitive searching and its effectiveness as a data segmentation and labeling algorithm. 
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3 Methodology 

3.1 Data simplification 

In order to make the real-world constraints into information that can be recognized by the reinforcement learning 

model, we abstracted the present information and behaviors, extracted their features, simplified the information 

into 3D-maps and 2D-maps to be stored in arrays, and simplified the densification process into two behaviors: 

adding in the search for an open space and adding on a roof. 

3.1.1 3D-Map 

To better analysis and summarize the urban information, we collected the urban data from OSM in London. (see 

Fig. 3A). It shows different categories of land use and building types. 

 

Fig. 3A. A figure shows the different land use and building type in London 

To simplify the problems, we extracted 4 most important land use and 2 building types into our study as 6 cell 

types, which include residential area, street, commercial area, green area, residential building and commercial 

building. (see Fig 3B) 
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Fig. 3B. Category of 6 different cell types. 

Accordingly, with these 6 cell types we transformed the urban information into voxel and storage the cell type 

information in a 3D Array. (see Fig.3C) 

 

Fig. 3C. Voxelization of the urban plot. 

3.1.2 2D-Map 

2D-map is used as a constrain information in this study to support the training process. We transformed four 

important city figure into 2D-map and storage in 2D Array which including residential building index, façade 

solar exposure, ground solar radiation and empty space. 

⚫ Residential Building index 

The residential building index is used to give a unique index to each of the residential building for further training 

process. (see Fig 3D). In this 2D-map, residential building cells are recognized as integers larger than zero while 

other cells area recognized as zero. 

 

Fig. 3D. left image is the top projection of the city plot right image shows the residential building with unique figure. 

⚫ Façade solar exposure 
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In this study, we simplify the façade solar exposure problems into distance problem. If there is enough space 

between residential buildings, it will assure the adequate sunlight. Hence, we use a distance map to shows the area 

which can offers more façade solar exposure to the buildings. (see Fig 3E). In this map, 0 represent the buildings, 

2 represent 1 cell away from the buildings 4 represent 2 cells away from the building, 6 represent else space.  

 

Fig. 3E. left image is the top projection of the city plot right image shows the distance to the buildings 

⚫ Ground solar radiation   

For ground solar radiation, we calculate daylight hours on the winter solstice, when daylight hours are shortest, 

to ensure that the community has enough daylight hours. (see Fig 3F). In this map, -1 represent the buildings, 1-

7 represent the radiation hour in the community in winter solstice.  

 

Fig. 3F. left image is the top projection of the city plot right image shows the ground solar radiation map. 
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⚫ Empty space 

For empty space, our goal is to spot the empty space with largest area. Hence, we introduced quadtree searching 

method into our study.  

First, we preprocess the city plot into a 2D map which shows every empty area in the residential land use (see Fig 

3G) 

 

Fig. 3G.  right image shows the preprocessed empty space map. 

Second, we input the preprocessed maps into a quadtree to identify regions with a density lower than 0.2. Within 

these selected regions, we prioritize cells at lower levels and include their surrounding cells in our selection list 

to minimize the risk of missing relevant areas. (see Fig 3H). In this two quadtree maps, light pink represent the 

cell with the density lower than 0.2, dark pink represent the cell with lower levels. 

 

Fig. 3H. The figure shows the selecting process through quadtree map. 

Finally, we transformed this quadtree map into 2D-map. (see Fig 3I). 
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Fig. 3I. The figure shows the quadtree 2D map. 

3.1.3 Behaviors 

In this study, the framework simulates two real-world densification strategies: adding extensions to existing 

buildings or constructing new ones on vacant land. 

 

3.2 Reinforcement Learning 

In our procedural building generation system, we implement a multi-agent reinforcement learning approach with 

specialized agent types for different aspects of construction. 

3.2.1 Architecture 

Our system employs two distinct agent types: 

1. Ground Agent: Responsible for the primary building construction and establishing foundations. 

2. Roof Agent: Modified from the Ground Agent, specializing in roof structure formation with adjusted 

reward parameters. 

Both agents operate within a three-dimensional voxel-based environment, where each voxel represents a poten-

tial building element. The agents make sequential decisions based on current observations to maximize cumula-

tive rewards aligned with architectural constraints. 
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Fig. 3J.  Image shows a simple architecture of reinforcement learning. 

3.2.2 Actions 

Agents have two primary action capabilities: 

1. Movement: Agents can navigate in six directions within the 3D environment (forward, backward, left, 

right, up, down). 

2. Occupation: At each position, agents decide whether to occupy the current voxel with building material. 

 

Fig. 3K.  Image shows two branches of action. 

These binary decisions (move direction + occupy/not occupy) form the action space that agents learn to opti-

mize through reinforcement. 

3.2.3 Observations 

Agents receive the following observations from the environment: 

1. Coordinate Observations: Relative position within the construction plot. 

2. Neighborhood Observations: 

• Lower layer: 25 surrounding positions 

• Middle layer: 8 surrounding cubes 

• Upper layer: 1 position directly above 

3. Cell Type Observations: Material types of neighboring cells. 

4. Building Metrics: 
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• Current house size (occupied cubes) 

• Maximum house size (target constraint) 

• Normalized house size ratio (0-1 range) 

5. Spatial Measurements: 

• Current mass diagonal 

• Maximum diagonal (diagonal of the plot) 

• Normalized diagonal ratio 

 

Fig. 3L.  Image shows the checking coordinate and neighbors. 

 

Fig. 3M.  Image shows the spatial measurements. 

3.2.4 Rewards 

The Ground Agent's behavior is guided by seven reward components: 

1. Neighborhood Reward: Awarded when agents maintain proximity with neighbors. 

2. Stable Base Reward: Higher rewards for positions directly above existing structures; penalties otherwise. 

3. Continuity Reward: Encourages continuous structures by rewarding adjacency to existing building ele-

ments. 

4. Residential Area Reward: Incentivizes building within designated zones. 

5. Boundary Reward: Distance-based calculations to maintain appropriate plot boundaries. 

6. Ground Stability Reward: Promotes stable foundation at ground level. 

7. Compactness Reward: Calculated as (volume ratio - diagonal ratio) to encourage efficient space utiliza-

tion. 
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Environmental Constraint: Solar Index Reward evaluates sunlight exposure using ray-casting based on London 

winter solstice light vectors. 

The Roof Agent uses modified reward parameters including: 

• "Inside Residential" replaced with "On Existing Building" 

• "Away from Building" changed to "Close to Building" 

• Additional reward for maintaining single-building structures 

 

 

 

 

Fig. 3N.  These images show the different types of reward. 
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3.2.5 Episode 

Each training episode follows a structured process: 

Initialization: 

• Plot environment setup 

• Agent position pre-processing using quad tree mapping 

• Agent instantiate 

Progression: 

• Sequential agent actions and environment updates 

• Reward accumulation 

• State observation 

Termination Conditions: 

• Target Achievement: Building reaches specified target size 

• Agent Entrapment: Agent has no valid movement options 

This episodic structure enables agents to learn effective building strategies through repeated interaction with the 

environment. 

 

4 Results 

4.1 Prototype Result 

To validate our model setting, we trained our agent in three basic prototypes. 

⚫ Prototype-1: Ground agent on orthogonal building plot 

The objective of the agent in prototype-1 is to find the empty space in the 20*20 plot, avoiding occupied cells on 

the green area and keep distance with the existing building. The results are shown in Fig.4A-1. Cumulated reward 

is shown in Fig.4A-2. The outcomes demonstrate the effectiveness of the building placement strategy. 

 

Fig. 4A-1. The figure shows the model performance before and after training. 
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Fig. 4A-2. The figure shows the cumulated reward through the training process. 

⚫ Prototype-2: Ground agent on non-orthogonal building plot 

The objective of the agent in prototype-2 is to find out if the model works in protoype-1 will works as well in the 

non- orthogonal plot. The results are shown in Fig.4B-1. Cumulated reward is shown in Fig.4B-2. The outcomes 

demonstrate the effectiveness. 

 

Fig. 4B-1. The figure shows the model performance before and after training. 

 

Fig. 4B-2. The figure shows the cumulated reward through the training process. 

 

 

⚫ Prototype-3: Roof agent on orthogonal building plot 

 

5 Results(500-700) 

5.1 Prototype Result 

To validate our model setting, we trained our agent in three basic prototypes. 

⚫ Prototype-1: Ground agent on orthogonal building plot 

The objective of the agent in prototype-1 is to find the empty space in the 20*20 plot, avoiding occupied cells on 

the green area and keep distance with the existing building. The results are shown in Fig.4A-1. Cumulated reward 

is shown in Fig.4A-2. The outcomes demonstrate the effectiveness of the building placement strategy. 
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Fig. 4A-1. The figure shows the model performance before and after training. 

 

Fig. 4A-2. The figure shows the cumulated reward through the training process. 

⚫ Prototype-2: Ground agent on non-orthogonal building plot 

The objective of the agent in prototype-2 is to find out if the model works in protoype-1 will works as well in the 

non- orthogonal plot. The results are shown in Fig.4B-1. Cumulated reward is shown in Fig.4B-2. The outcomes 

demonstrate the effectiveness. 

 

Fig. 4B-1. The figure shows the model performance before and after training. 

 

Fig. 4B-2. The figure shows the cumulated reward through the training process. 
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⚫ Prototype-3: Roof agent on orthogonal building plot 

 

 

Fig. 4A-3. The figure shows the model performance before and after training. 

 

Fig. 4B-3. The figure shows the cumulated reward through the training process. 

 

5.2 Application  Robin 

 
Fig. 4C. The figure shows the final result on real site. 

Based on the provided data, the project has achieved significant value growth. The Gross Floor Area (GFA) in-

creased by 8,192 square meters, the number of units expanded by 110 voxels, while the plot ratio improved by 

11% and density grew by 9%. This comprehensive enhancement across all metrics reflects optimized spatial uti-

lization efficiency, achieving both building area and functional unit expansion while maintaining reasonable den-

sity growth. This balanced development not only increases the overall value of the project but also establishes a 

solid foundation for future sustainable development. 
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6 Discussion 

Throughout the study, we identified the housing crisis in London and proposed a new way to densify the residential 

area in the initial design phase. In this study, we envisioned a method to simplify the complicated real world 

constrain into quantitative data. We successfully built up a multi-agents reinforcement learning framework to 

automatically spot the available space in the given city plot and densify the plot under the constrain of land using, 

sunlight, communities continuity etc. Our innovative approach offers a powerful reference tool for urban 

densification processes. 

6.1 Strength 

⚫ Innovative Methodology: 

The integration of agent-based reinforcement learning (RL) into urban planning offers a novel approach to 

addressing London's housing crisis.  

⚫ Multidimensional Data Integration: 

The digitalization process incorporates diverse factors (e.g., land use, solar exposure, green spaces, 

neighborhood continuity, compactness). This holistic approach ensures realistic constraints are modeled, 

enhancing the practical relevance of the solutions. 

⚫ Two ways of densification’ 

The framework differentiates between two agent behaviors. Ground-level agents focus on densifying vacant 

residential spaces, while rooftop agents target the expansion of existing buildings. These two approaches 

reflect real-world densification strategies: new constructions and rooftop additions. 

⚫ Scenario-Specific Validation: 

Prototype training was conducted in varied environments and real-world testing in London’s Waltham Forest 

demonstrated measurable improvements (e.g., increased Gross Floor Area/GFA). 

6.2 Limitation 

⚫ Limitations of Generalizability: 

The training results are constrained by the predefined observation space, making them inapplicable outside 

the designated plot. 

⚫ Simplified Assumptions: 

The extraction of information into 2D and 3D maps may overlook certain spatial complexities inherent to 

real-world 3D environments. 

The Quadtree method, due to its inherent mechanism, may fail to capture some effective plots, potentially 

reducing accuracy. 

⚫ Policy and Social Disconnectedness: 
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The study overlooks key policy constraints (e.g., Metropolitan Green Belt restrictions) and community 

dynamics (e.g., public resistance to densification), limiting its practical applicability. 

⚫ the leak of integration of training result  

While the training successfully meets its predefined targets, there is room for improvement in the overall 

coherence and adaptability of the model's output format. 

6.3 Future Work 

⚫ Generalizing: 

In future work, we plan to adopt a relative coordinate system and utilize raycasting to estimate distances 

between elements. This approach could improve the model’s adaptability and enable it to perform more 

robustly in diverse spatial contexts. 

⚫ Detailing: 

Rather than massing, we plan to retouch the details on generated buildings, including functional areas, inte-

rior circulation, locating openings for window to maximize ventilation. These could potentially be achieved 

by further CFD analysis, 3D-level sunlight analysis, etc. 

7 Conclusion 

 

Fig.7. The figure shows the cumulated reward through the training process. 

 

Fig 7 showcases the encapsulated workflow in our Reinforcement Learning framework by doing pairwise 

comparison against human designers and urban planners. With all these strategies cumulatively applied, our 

agent-based RL model successfully streamlines the framework of housing design for a metropolitan city 

prototype. 
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